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Abstract. We study a particular texture of the neutrino mass matrix generated in supergravity with
non-universal bilinear R-parity violation parameters. The relatively high value of tan β makes the one-loop
contribution to the neutrino mass matrix as important as the tree-level one. The atmospheric angle is
nearly maximal, and its deviation from maximal mixing is related to the small size of the ratio between
the solar and atmospheric mass scales. There is also a common origin for the small values of the solar and
reactor angles, but the latter is much smaller due the large mass ratio between the heaviest two neutrinos.
There is a high dependence of the neutrino mass differences on the scalar mass m0 and the gaugino mass
M1/2, but a smaller dependence of the mixing angles on the same Sugra parameters. Measurements of
branching ratios for the neutralino decays can give important information on the parameters of the model.
There are good prospects at a future linear collider for these measurements, but a more detailed analysis
is necessary for the LHC.

1 Introduction

With a number of experimental results in atmospheric,
solar, reactor, and accelerator neutrino physics, it has been
established that neutrinos have mass and oscillate [1]. This
is a very important result in itself but, in addition, it is
the first direct experimental indication that the standard
model (SM) needs to be modified [2].

In the SM, neutrinos are massless. One popular mech-
anism for the generation of neutrino masses is the see-saw
mechanism, where a right-handed neutrino field with a very
large mass is added to the SM [3]. The resulting neutrino
mass is inversely proportional to this large mass. Another
interesting and predictive mechanism is the radiative gener-
ation of neutrino masses and mixing in a supersymmetric
model [4] that violates lepton number and R-parity [5]
with bilinear terms in the superpotential. Phenomenologi-
cal consequences of R-parity-violating supersymmetry are
very distinct from R-parity-conserving models [6].

Bilinear R-parity breaking is an interesting mechanism
for the generation of neutrino masses and mixing angles
due to its simplicity and predictability [7,8]. It is a simple
extension of the minimal supersymmetric standard model
(MSSM) which includes no new fields and no new inter-
actions. It differs from the MSSM in a handful of bilin-
ear terms that violate lepton number and R-parity, which
cannot be eliminated with field redefinitions [9]. Neutrino
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masses and mixing angles are calculable and agree with ex-
perimental measurements [10,11]. Motivations for bilinear
R-parity violation (BRpV) are, for example, models with
spontaneously broken R-parity [12], and a model with an
anomalous horizontal U(1) symmetry [13], where BRpV
appears without trilinear R-parity violation.

Results from SuperKamiokande [1] on atmospheric neu-
trinos gave strong evidence of the νµ–ντ oscillation of atmo-
spheric neutrinos with maximal or nearly maximal mixing,
and gave strong evidence against the small-mixing-angle
solution of the solar neutrino problem. Results from the
Sudbury Neutrino Observatory (SNO) and the KamLAND
experiment have confirmed the large-mixing-angle solution
of the solar neutrino problem, showing that more than
half of the electron neutrinos produced at the sun oscillate
into other flavors before reaching the Earth [1]. Results
from the Wilkinson microwave anisotropy probe (WMAP)
show temperature differences within the microwave back-
ground radiation, which combined with results from large
scale structure give a bound on the sum of the neutrino
masses [14]. Finally, evidence for neutrinoless double-beta
decay, if confirmed, would show the Majorana nature of
neutrinos and the non-conservation of lepton numbers [15].

There are several analysis of these experimental re-
sults [16]. The 3σ allowed regions for the neutrino param-
eters in [17] are

1.4 × 10−3 < ∆m2
32 < 3.3 × 10−3 eV2
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7.2 × 10−5 < ∆m2
21 < 9.1 × 10−5 eV2

0.52 < tan2 θ23 < 2.1 (1)

0.30 < tan2 θ12 < 0.61

tan2 θ13 < 0.049

which we show for reference.
In this article, we reanalyze the possibility of having

BRpV in a supergravity scenario, in which the scalar masses
and the gaugino masses are universal at the grand unified
theory GUT scale. The electroweak symmetry is broken
radiatively but, contrary to the MSSM, sneutrinos acquire
vacuum expectation values as well as the Higgs bosons.
We give up the possibility that the εi and Bi parameters
(one for each lepton analogously to the µ and B terms in
the MSSM respectively) are universal at the GUT scale,
because otherwise there is no good solution for neutrino
physics that is compatible with experiments.

We found solutions that have not been discussed pre-
viously in the literature. These solutions are characterized
by a large value of tanβ and, therefore, the importance of
one-loop contributions to the neutrino mass matrix is en-
hanced.

2 Neutrino mass at tree level

The superpotential of our BRpV model differs from the
MSSM by three terms which violate R-parity and lep-
ton number,

W = WMSSM + εiL̂iĤu (2)

where the εi have units of mass. We complement these with
related terms in the soft Lagrangian,

L = LMSSM + BiεiL̃iHu (3)

where the Bi also have units of mass. The presence of these
terms induce vacuum expectation values vi for the sneu-
trinos, which are calculated by minimizing the scalar po-
tential.

At the tree level, neutrino masses are generated via a
low-energy see-saw-type mechanism. Neutrinos mix with
neutralinos, and the MSSM neutralino mass matrix is ex-
panded to a 7 × 7 mass matrix for the neutral fermions

MN =


Mχ0 mT

m 0


 . (4)

Here, Mχ0 is the usual 4 × 4 neutralino mass matrix, and
m is

m =




− 1
2 g′v1

1
2 gv1 0 ε1

− 1
2 g′v2

1
2 gv2 0 ε2

− 1
2 g′v3

1
2 gv3 0 ε3


 (5)

which mixes the neutrinos with the neutralinos. The matrix
MN can be diagonalized by blocks, and the effective 3 × 3
neutrino mass matrix turns out to be equal to

M(0)
ν = − m · M−1

χ0 · mT

=
M1g

2+M2g
′2

4 det(Mχ0)




Λ2
1 Λ1Λ2 Λ1Λ3

Λ1Λ2 Λ2
2 Λ2Λ3

Λ1Λ3 Λ2Λ3 Λ2
3


 (6)

where we have defined the parameters Λi = µvi + εivd,
which are proportional to the sneutrino vacuum expecta-
tion values in the basis where the ε terms are removed from
the superpotential.

This mass matrix can be diagonalized with the following
two rotations.

V (0)
ν =




1 0 0

0 cos θ
(0)
23 − sin θ

(0)
23

0 sin θ
(0)
23 cos θ

(0)
23


 ×




cos θ
(0)
13 0 − sin θ

(0)
13

0 1 0

sin θ
(0)
13 0 cos θ

(0)
13


 ,

(7)
where the reactor mixing angle in terms of the align-
ment vector Λ is

tan θ
(0)
13 = − Λ1

(Λ2
2 + Λ2

3)
1
2

, (8)

and the atmospheric angle is

tan θ
(0)
23 =

Λ2

Λ3
. (9)

As we will see later, despite the fact that the tree-level
contribution to the heavy neutrino mass dominates over
all loops, there are other contributions to the neutrino mass
matrix that cannot be neglected. For this reason, the above
tree-level formulas will not be enough to explain the results.

3 Supergravity and BRpV

In Sugra–BRpV the independent parameters are

m0 , M1/2 , A0 , tan β , sign(µ) , εi , Λi , (10)

where m0 is the universal scalar mass, M1/2 is the universal
gaugino mass, and A0 is the universal trilinear coupling,
valid at the GUT scale. In addition, tanβ is the ratio
between the Higgs vacuum expectation values, and sign(µ)
is the sign of the Higgsino mass parameter, both valid at
the EWSB scale. Finally, εi are the supersymmetric BRpV
parameters in the superpotential, and Λi the parameters
depending on the sneutrino vacuum expectation values.

As we mentioned in the Introduction, the scenario with
universal εi and Bi terms at the GUT scale is excluded by
neutrino experiments; thus, we relax it. In this way, we
use εi and Bi at the weak scale as free parameters. The
minimization conditions for the scalar potential are

0 =
(
m2

Hd
+ µ2) vd + vdD − µ (B0vu + v · ε) ,

0 = −B0µvd +
(
m2

Hu
+ µ2) vu − vuD + v · Bε + vuε 2 ,

(11)

0 = viD + εi (−µvd + vuBi + v · ε) + viM
2
Li ,
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where D = 1
8 (g2 +g′2)(v2

d −v2
u +v 2), (v)i = vi , (ε)i = εi ,

and (Bε)i = Biεi . From these equations we calculate the
sneutrino vacuum expectation values as a function of the
soft and supersymmetric (SUSY) terms.

We use the code SUSPECT [18] to run the two loops
RGE from the unification scale down to the weak scale. The
electroweak symmetry breaking is analogous to the MSSM,
with the difference that there are three extra vacuum ex-
pectation values (VEV) corresponding to the sneutrino
VEVs vi. These VEVs are small and constitute a small
perturbation to the MSSM EWSB.

Despite the fact that sneutrino VEVs are dependent
quantities, since they are calculated from the minimiza-
tion of the scalar potential, we remove from the group of
independent parameters the Bis in favor of Λi = µvi+εivd,
as indicated in (10), because they are more useful in de-
scribing the neutrino physics. As in the MSSM, the input
parameters B0 and |µ| are eliminated in favor of tanβ and
mz. In a similar fashion, in BRpV the input parameters
Bi are eliminated in favor of vi (or more precisely, in favor
of Λi), explaining our choice of free parameters in (10).

Our analysis will be centered around the SPS1 scenario
in Sugra from the Snowmass 2001 benchmark scenarios [19],
which is defined by

m0 = 100 GeV , M1/2 = 250 GeV ,

A0 = −100 GeV , tan β = 10 , µ > 0 .
(12)

This scenario is typical of Sugra, with a neutralino lightest
supersymmetric particle (LSP) with a mass of mχ0

1
=

99 GeV, and a light neutral Higgs boson with a mass just
above the experimental limit mh = 114 GeV.

In this context we find several solutions for neutrino
physics which satisfy the experimental constraints on the
atmospheric and solar mass squared differences, the three
mixing angles, and the mass parameter associated with
neutrinoless double-beta decay [20]. For illustrative pur-
poses we single out the following

ε1 = −0.0004 , ε2 = 0.052 , ε3 = 0.051 ,

Λ1 = 0.022 , Λ2 = 0.0003 , Λ3 = 0.039 .
(13)

This solution is characterized by

∆m2
32 = 2.7 × 10−3 eV2 , ∆m2

21 = 8.1 × 10−5 eV2 ,

mee = 0.0036 eV , tan2 θ23 = 0.72 , (14)

tan2 θ12 = 0.54 , tan2 θ13 = 0.0058 ,

which are well inside the experimentally allowed window
in (1). We note that the random solution in (13) is com-
patible with ε1 = Λ2 = 0, that is, the neutrino parameters
in (14) are hardly changed with this replacement.

As seen in the following chapters themodel is highly con-
strained, but as a consequence it is also highly predictive. If
parameters are varied randomlywithin |εi|2, |Λi| < 1 GeV2,
good solutions are found every 103–104 points. Neverthe-
less, this should not be interpreted as a sign of fine-tuning,
because the real cause is the high precision of the experi-
mental results in neutrino observations. In this sense, the

constraints on the sneutrino VEVs imposed by neutrino ex-
periments can be considered as analogous to the constraints
on the Higgs VEVs imposed by gauge-boson mass measure-
ments.

4 Texture of the neutrino mass matrix

Among the solutions to neutrino physics that we have found
in our model, there are a few textures [22] for the effective
neutrino mass matrix. Our study case in (13) belongs to
the most frequent one, which is

Meff
ν = m


λ 0 λ

0 a a
λ a 1


 (15)

with a ∼ 0.5–0.8, λ ∼ 0.1–0.3, and m ∼ 0.02–0.04 eV. To
understand how this texture works we expand the neutrino
masses and mixing angles in powers of λ. Keeping terms
up to first order, the three neutrino masses are

mν1 = λm + O(λ2)

mν2 = 1
2 m(1 + a −

√
5a2 − 2a + 1) + O(λ2)

mν3 = 1
2 m(1 + a +

√
5a2 − 2a + 1) + O(λ2)

(16)

and the rotation matrix that diagonalizes the neutrino mass
matrix, denoted by UPMNS , is

UPMNS =


 1 λsθm/mν2 λcθm/mν3

λ/(1 − a) cθ −sθ

−λ/(1 − a) sθ cθ


 + O(λ2)

(17)
with

tan 2θ =
−2a

1 − a
. (18)

In the same approximation, the atmospheric, solar, and
reactor angles are given by

tan 2θ23 = 2a/(1 − a) + O(λ2)

tan θ12 = λsθm/mν2 + O(λ2)

sin θ13 = λcθm/mν3 + O(λ2)

(19)

while the atmospheric and solar mass differences are

∆m2
32 = m2(1 + a)

√
5a2 − 2a + 1 + O(λ2) ,

∆m2
21 = 1

2 m2
[
1 + 3a2 − (1 + a)

√
5a2 − 2a + 1

]
+ O(λ2) .

(20)

As an example, consider a = 1/2 and m = 0.04 eV. We
find ∆m2

32 = 3
√

5m2/4 ≈ 2.7 × 10−3 eV2, and ∆m2
21 =

(7 − 3
√

5)m2/8 ≈ 5.8 × 10−5 eV2, both in agreement with
experiments. The third parameter, which in this approxi-
mation does not depend on the small parameter λ, is the
atmospheric angle, obtaining tan2 θ23 ≈ 0.4 from (18). This
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value is at the lower end of the allowed region, nevertheless,
taking a = 0.6 we obtain tan2 θ23 ≈ 0.5, which is in better
agreement with experiments.

The fact that a is smaller than unity implies that the
atmospheric mixing is not maximal. In the limit a → 1,
the atmospheric mixing approaches maximality, but the
atmospheric mass ∆m2

atm → 4m2 which is too large if
m = 0.04 eV, and the solar mass ∆m2

sol → 0, which is too
small. Decreasing tan2 θatm by decreasing a will decrease
the atmospheric mass scale and increase the solar one,
both towards acceptable values. Therefore, the value of
a relates these three neutrino parameters, such that the
non-maximal value for the atmospheric angle is connected
to the smallness of the ratio between the solar mass scale
and the atmospheric scale.

The previous considerations are modified by the non-
zero value of λ. In the approximation to which we are
working, the solar and reactor angles are proportional to
the parameter λ, thus they are small quantities themselves.
Nevertheless, the presence of mν2 in the denominator of
tan θ12, as opposed to mν3 in the denominator of tan θ13,
makes the reactor angle much smaller than the solar angle.
In the case a = 1/2 and λ = 0.2 we find for the solar
angle tan2 θ12 = 0.3, which is in the lower part of the
allowed region and compatible with experiments. For the
reactor angle we find tan2 θ13 = 0.017 which is well below
the experimental upper bound. We stress that we use the
complete numerical calculation in the rest of the article,
rather than these approximated formulas.

5 One-loop contributions

All particles in theMSSMcontribute to the renormalization
of the neutralino/neutrino mass matrix. One of the most
important contributions comes from the bottom–sbottom
loops. In the gauge eigenstate basis this contribution is [21],

∆Πij = − Ncmb

16π2 2sb̃cb̃h
2
b∆Bb̃1b̃2

0 (21)

×
[

εiεj

µ2 − a3

µ
(εiΛj + εjΛi) +

(
a2
3 +

aLaR

h2
b

)
ΛiΛj

]
where we have defined

aR =
g√
2

(
1
3

tW a1 − a2

)
, aL =

g√
2

2
3

tW a1 , (22)

a1 =
g′M2µ

2∆0
, a2 = − gM1µ

2∆0
,

a3 =
vu

4∆0
(g2M1 + g′2M2) .

(23)

The main contributions to (21) can be understood as com-
ing from the graph
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.

Here, neutrinos (in the gauge eigenstate basis) mix with
Higgsinos, which in turn interact with the pair bottom–
sbottom with a strength proportional to the corresponding
Yukawa coupling. Full circles indicate the projection of
the sbottom mass eigenstate into right and left sbottom,
which contribute with a sin θb̃ and cos θb̃ respectively. Open
circles indicate the projection of the neutrino field onto the
Higgsino, proportional to the small parameter a3Λi −εi/µ.
The quark propagator contributes with a factor mb, and
summing over color gives the factor Nc. Finally, we have
in (21)

∆Bb̃1b̃2
0 ≡ B0

(
0, m2

b̃1
, m2

b

)
− B0

(
0, m2

b̃2
, m2

b

)
. (24)

The one-loop corrected neutrino mass matrix, in the
first approximation, has the general form

∆Πij = AΛiΛj + B(εiΛj + εjΛi) + Cεiεj (25)

since all loop contributions can be expanded in this way.
The terms of higher order in Λ and ε have been neglected.

Considering the solutions to neutrino physics whose ef-
fective neutrino mass matrix has a texture of the form
in (15), and including contributions from all one-loop
graphs, we extract the numerical value of the above pa-
rameters and find A ≈ 7 eV/GeV4, B ≈ −0.5 eV/GeV3,
and C ≈ 9 eV/GeV2.

Of the three parameters only A gets a contribution at
tree level, and we estimate

A(0) =
g2M1 + g′2M2

4∆0
≈ 7.6 eV/GeV4

. (26)

Clearly, the tree-level contribution to A dominates over
all one-loop graphs. This is not true for B and C because
these two parameters are entirely generated at one loop.

The contribution to A, B, and C from the bottom–
sbottom loops can be read from (21). In the squark sector
we have mb̃1

= 492, mb̃2
= 538 GeV, and sin 2θb̃ = 0.88,

which implies

C
(1)
b̃

= − Ncmb

8π2µ2 sb̃cb̃h
2
b∆Bb̃1b̃2

0 ≈ 9.8 eV/GeV2
. (27)

This result is very close to the actual numerical value, and
underlines the fact that the bottom–sbottom loops are very
important in this particular scenario.

Considering that the value for B, in the supergravity
model with which we are working, is much smaller than A
and C, we might in first approximation neglect it in (25).
In this case, for the neutrino solution in (13) we obtain the
following approximated neutrino mass matrix,

Meff
ν =


 AΛ2

1 0 AΛ1Λ3

0 Cε22 Cε2ε3

AΛ1Λ3 Cε2ε3 AΛ2
3 + Cε23


 . (28)

This form is precisely the texture observed in (15) obtained
from the numerical results. Therefore, the zero in the neu-
trino mass matrix is there because Λ2, ε1 ≈ 0 and because
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B is very small compared with A and C. The three matrix
elements of order λ in (15) are explained by the fact that Λ1
has a numerical value smaller than the other three relevant
parameters, as can be seen from (13). Finally, the param-
eter a in (15) is smaller than unity because AΛ2

3 and Cε23
are comparable and of the same sign, and because ε2 ≈ ε3.

6 Numerical results

In this section we study numerical results on the neutrino
mass matrix, neutrino mass differences and mixing angles.
We center our studies in the supergravity benchmark given
in (12), although we also explore the behavior of the neu-
trino parameters in the m0 − M1/2 plane. We look for
solutions to neutrino physics with different values of the
BRpV parameters εi and Λi, but concentrate our attention
in the particular solution given in (13).

First, we consider the supergravity benchmark in (12)
and randomly vary the BRpV parameters εi and Λi. We
look for solutions satisfying experimental restrictions on
neutrino parameters according to the 3σ intervals in (1),
and also according to a relaxation of those cuts given by:

1.2 × 10−3 < ∆m2
32 < 4.8 × 10−3 eV2

0.43 < tan2 θ23 < 2.3 (29)

5.1 × 10−5 < ∆m2
21 < 19 × 10−5 eV2

motivated by previous allowed regions and shown to com-
pare the effect of the improved analysis of the experimen-
tal data.

Solutions satisfying the relaxed cuts given in (29) are
displayed as green crosses in Fig. 1, over the plane formed
by the absolute value of the vector ε and the squared root
of the absolute value of the alignment vector Λ, with both
quantities measured in GeV. Two distinctive regions are
observed, with low and high values of |Λ|, with solution

Fig. 1. Solutions to neutrino physics passing all experimental
cuts described in the text, working within a particular super-
gravity benchmark

Fig. 2a–d. Atmospheric mass-squared difference as a function
of the four relevant BRpV parameters for the reference scenario:
ε2, ε3, Λ1, and Λ3

with a low value of |Λ| being harder to obtain. When the
stringent cuts are implemented we find solutions only in the
region of large |Λ|, and we represent them as blue squares.

Since the tree-level neutrino mass matrix depends on
Λi only, and one-loop corrections depend on both Λi and
εi, although dominated by εi, the position of the solutions
in the plane |ε| versus |Λ| is an indication of how important
loop contributions are. We stress the fact, nevertheless, that
increasing values of tanβ (which we keep constant in this
study) increase the importance of one-loop corrections,
as observed in (21) due to the presence of the Yukawa
couplings. In our case, as we will confirm in the following
figures, the one-loop contributions to the neutrino mass
matrix are very important.

In Fig. 2 we have the atmospheric mass-squared differ-
ence as a function of the four BRpV parameters ε2, ε3, Λ1,
and Λ3. The neutrino mass matrix has the texture shown
in (15), which implies an atmospheric squared mass differ-
ence ∆m2

32 given approximately by (20). The parameters
m and a in (15) are m = AΛ2

3 + Cε23 and a = Cε22/m,
as can be read from (28). The scale m is quadratic in the
parameters Λ3 and ε3, since the dependence of A and C on
the Λs and εs is weak. The dependence of the atmospheric
mass is obtained by replacing these expressions in (20), but
when a ≈ 1/2 the atmospheric scale can be approximated
even further obtaining,

∆m2
32 ≈ 3

2

√
5(AΛ2

3 + Cε23)Cε22 (30)

explaining the quadratic dependency of ∆m2
32 on ε2, ε3

and Λ3, in frames 2a, 2b, and 2d respectively, and the mild
dependency on Λ1 (hidden in the neglected terms of order
λ2), as can be observed in frame 2c. The dependence on Λ1
become strong at high values of this parameter because,
in that case, neglected terms are no longer small.

We note that using the tree-level formulae in Sect. 2,
the atmospheric mass scale would be given by ∆m2

32 ≈
(A(0)|Λ|2)2 ≈ 0.3× 10−3 eV2, highlighting the inadequacy
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Fig. 3a–d. Atmospheric angle as a function of the four relevant
BRpV parameters for the reference scenario: ε2, ε3, Λ1, and Λ3

of the tree-level formula. On the contrary, the approxi-
mated expression in (30) gives a value of 2.8 × 10−3 eV2,
which is much closer to the value in (14) found using the
complete calculation.

In Fig. 3 we plot the tangent squared of the atmospheric
angle, tan2 θ23. Using (19), or directly from the mass matrix
in (28), we find that the atmospheric angle satisfies

tan 2θ23 ≈ 2Cε2ε3
AΛ2

3 + C(ε23 − ε22)
. (31)

This relation implies that, if ε2 approaches zero, the at-
mospheric angle θ23 → 0. This behavior is confirmed in
frame 3a. On the other hand, if ε3 approaches zero then
θ23 → π/2 because Cε22 is larger than AΛ2

3, and this ex-
plains the divergence of tan θ23 in frame 3b.

In frame 3c we see again the mild dependency of the at-
mospheric parameters on Λ2, in this case the atmospheric
angle. If this parameter becomes very large though, ne-
glected terms of order λ2 become important. Finally, the
dependency of the atmospheric angle on Λ3 in frame 3d
can also be understood from (31) since clearly if |Λ3| grows
then tan θ23 decreases.

From (9), the tree-level atmospheric angle satisfies

tan 2θ
(0)
23 =

2Λ2Λ3

Λ2
3 − Λ2

2
(32)

and this relation clearly misses all the influence of the one-
loop graphs on the neutrino mass matrix seen in (31).
Numerically, the approximated formula in (31) gives
tan2 θ23 ≈ 0.42, which is close to the value in (14). On
the contrary, the tree-level formula implies tan2 θ

(0)
23 ≈ 0.

In Fig. 4 we plot the solar mass squared difference as
a function of the BRpV parameters ε2, ε3, Λ1, and Λ3. In
the case of ∆m2

21 the neglected terms of order λ2 in (20)
are numerically more important than in the atmospheric
case; therefore, predictions based on this approximation
are less accurate.

Fig. 4a–d. Solar mass squared difference as a function of the
four relevant BRpV parameters for the reference scenario: ε2,
ε3, Λ1, and Λ3

In frame 4a we see the dependence of the solar mass on
ε2. This behavior can be understood considering that the
parameter a is proportional to ε22, and when this parameter
goes to zero, the solar mass difference approaches zero like
a2, as seen from (20).

In frame 4b we see how the solar mass difference de-
pends on ε3. If ε3 → 0 then the eigenvalue Cε22 decouples
and becomes the heaviest neutrino. Of the other two, one
neutrino is massless, and the solar mass difference becomes
equal to the second neutrino mass squared. A growing ε3
will mix the massless neutrino with the heaviest, increasing
the lightest neutrino mass, therefore, decreasing the solar
mass difference, as observed in frame 4b.

The dependency of the solar mass on Λ1 and Λ3 can be
understood only if we go beyond the simple approximation
in (20). Terms of orderλ2 introduce a dependency onΛ1 and
Λ3 such that λ approaches zero when these last parameters
go to zero, thus explaining the behavior shown in frame 4c
and 4d.

In Fig. 5 we have the tangent squared of the solar angle,
tan2 θ12, as a function of the BRpV parameters ε2, ε3, Λ1,
and Λ3. Working in the texture given in (15), the solar
angle according to (19) is approximately given by

tan θ12 =
AΛ2

1

mν2

sin θ23 . (33)

The dependency on Λ1 is explicit and comes from the small
parameter λ in (15). As we know from (19) and (20), the
dependency of θ23 and mν2 on Λ1 is weak. The behavior of
the solar angle on Λ1 seen in frame 5c is thus understood.

The solar angle as a function of ε2 can also be easily
understood noting that the parameter a is directly propor-
tional to ε22. According to (16) and (19) the second neutrino
mass approaches zero when a → 0, explaining the diver-
gence shown in frame 5a. Note that sin θ23 also approaches
zero when ε2 → 0, but more slowly.
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Fig. 5a–d. Tangent squared of the solar angle as a function of
the four relevant BRpV parameters for the reference scenario:
ε2, ε3, Λ1, and Λ3

Fig. 6. Region of parameter space in the plane m0−M1/2 where
solutions to neutrino physics passing all the implemented ex-
perimental cuts are located. Contours of constant atmospheric
mass difference and angle, and solar mass difference are dis-
played

The divergence of tan θ12 when Λ3 → 0 is harder to
understand from the approximated expression in (33), so
we go back to the effective neutrino mass matrix in (28).
If Λ3 approaches zero then the upper-left element of the
matrix decouples with a mass AΛ2

1. On the other hand, the
lower-right 2×2 sub-matrix has a zero eigenvalue, implying
that θ12 → π/2, and therefore explaining the divergence
shown in frame 5d.

In Fig. 6 we have chosen the neutrino solution given by
the BRpV parameters in (13), and vary the scalar mass
m0 and the gaugino mass M1/2, looking for solutions that
satisfy all experimental cuts. In this case, Sugra points
satisfying the experimental restrictions on the neutrino
parameters lie in the shaded region. Solutions are concen-

trated in a narrow band defined by M1/2 ≈ 230–260 GeV
and m0 ≈ 0–400 GeV. We note that in BRpV the LSP
need not to be the lightest neutralino, since it is not stable
anyway. For this reason, the region close to m0 ≈ 0 is not
ruled out.

Smaller values of M1/2 are not possible because the
atmospheric and solar mass differences become too large.
The allowed strip is, thus, limited from below by the curve
∆m2

21 = 9.1 × 10−5 eV2. The dependency on M1/2 is felt
stronger by the tree-level contribution to the parameter A,
given in (26). There we see that A decreases when the gaug-
ino mass M1/2 increases, implying that the atmospheric
mass decreases with M1/2, as seen in (30). In addition, the
solar mass difference is proportional to the parameter m2,
which in turn is proportional to A, thus, the solar mass
also decreases with the gaugino mass.

Higher values of the scalar mass m0 are not allowed
because the atmospheric angle becomes too small. The al-
lowed strip is, therefore, limited on the right by the contour
tan2 θ23 = 0.52. We can understand this behavior in the
following way: the parameter C decreases with increasing
m0 due to the Veltman’s functions, and this in turn makes
tan2 θ23 decrease with the scalar mass. High values of the
scalar mass are also limited from above because the at-
mospheric mass becomes too large. This can be explained
from (30) considering that the parameter C decreases with
increasing m0.

Higher values of M1/2 are not possible because the so-
lar mass becomes too small, therefore, the allowed stripe is
limited from above by the line ∆m2

21 = 7.2×10−5 eV2. As
we already mentioned, the solar mass difference is propor-
tional to the parameter m2, which in turn is proportional
to A, and we already know that A decreases with increasing
gaugino mass M1/2.

In Fig. 7 we see from another point of view the depen-
dence of the solar and atmospheric mass differences on the

Fig. 7. Solutions to neutrino physics in the plane formed with
the atmospheric and the solar mass differences. For the three
different values of m0 =100, 150, and 200 GeV, we vary the
gaugino mass M1/2
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scalar mass m0, and the gaugino mass M1/2. In the plane
formed by the atmospheric and solar mass differences we
plot four curves defined by a constant value of the scalar
mass m0 = 100, 200, 300, and 400 GeV, and vary the gaug-
ino mass in its allowed region, which is indicated in the
figure. We keep fixed the values of the BRpV parameters
εi and Λi, given (13). The two neutrino mass differences
are clearly proportional to each other, highlighting their
common origin represented by (25), where the parameter
A is controlled by tree-level physics and the parameter C is
controlled by one-loop physics, and where both are equally
important. Figure 7 can be understood further when seen
in relation with Fig. 6.

7 Collider physics

In our model, lepton number and R-parity are not con-
served. One important consequence is that the lightest
supersymmetric particle (LSP) is not stable, and will de-
cay into SM particles. Since it is not stable, the LSP need
not be the lightest neutralino, and whatever it is, its de-
cays can be used to prove the BRpV parameters and the
neutrino properties [10]. In the supergravity benchmark
point considered here, the LSP is the lightest neutralino,
with a mass of mχ0

1
= 99 GeV.

One of the interesting decay modes of the neutralino
is χ0

1 → W±l∓, where l = e, µ, τ . This decay is possible
because the neutralino mixes with neutrinos, which in turn
couple to the pair Wl, and also because the charged leptons
mix with charginos and they in turn couple to the pairχ0

1W .
For this reason, the relevant couplings in this decay are in
general very dependent on εi and Λi. In Fig. 8 we plot

Fig. 8a–d. Partial decay width of a neutralino into a W and
a lepton, measured in units of distance

the inverse of the partial decay width (multiplied by the
velocity of light to convert it into a distance) as a function
of the most relevant BRpV parameters. In frame 8a we see
the inverse of Γ (χ0

1 → We) as a function of Λ1. In fact, for
all practical purposes, the decay rate into electrons depends
only on Λ1. Since in the first approximation, the coupling
is proportional to Λ1, the inverse of the decay rate behaves
like Λ−2

1 , and this is seen in the figure. The values of Λ1 are
limited by the solar parameters. The inverse of the partial
decay rate χ0

1 → We is of the order of 20–25 cm, and it is
an important part of the total decay rate.

In frame 8b we have the inverse of Γ (χ0
1 → Wµ) as

a function of Λ2, and similarly to the previous case, the
decay rate into muons depends practically only on Λ2. In
our reference model in (13) we have Λ2 ≈ 0, but values
indicated in the figure are also compatible with neutrino
physics. The coupling of the neutralino to W and muon is
proportional to Λ2, so the inverse of the decay rate goes
like Λ−2

2 , as observed in frame 8b. Depending on the value
of Λ2, the partial decay length vary from centimeters to
kilometers in the figure. Therefore, this partial decay rate
contributes little to the total decay rate of the neutralino.

The inverse of Γ (χ0
1 → Wτ) is plotted in frames 8c

and 8d as a function of Λ3 and ε3 respectively. The de-
pendence on Λ3 is stronger and, similarly to the previous
cases, it goes like Λ−2

3 . The dependence on ε3 is weaker,
and the inverse decay rate increases with this parameter.
The inverse decay rate is of the order of 7 cm, making it
the most important contribution to the total decay rate.
Including the decay modes into neutrinos and a Z, the to-
tal inverse decay rate is near 4 cm. The ratios of branching
ratios for our benchmark point in (13) are given by

B(χ0
1 → Wµ)

B(χ0
1 → Wτ)

= 5.9 × 10−5 ,
B(χ0

1 → We)
B(χ0

1 → Wτ)
= 0.32 .

(34)
We note that if we increase Λ2 by a factor of four, the
first ratio of branching ratios increase to ∼ 10−3 without
changing the other ratio, while still passing all the experi-
mental cuts. In this way, it is clear that by measuring the
branching ratios of the neutralinos we get information on
the parameters of the model.

The discussion above suggests that the observation of
events coming from processes like pp → χ0

1χ
0
1 → WWeτ

(at the LHC) or e+e− → χ0
1χ

0
1 → WWeτ (at the NLC)

would make it possible to measure parameters relevant for
neutrino physics.

We used CompHEP 4.4 [24] to calculate the production
cross sections σ(pp → χ0

1χ
0
1) (LHC) and σ(e+e− → χ0

1χ
0
1)

(NLC at
√

s = 500 GeV) at leading order. The relevant
Feynman diagrams for the LHC are shown in Fig. 9. For
the SPS1 mSugra benchmark we obtain:

σ
(
pp → χ0

1χ
0
1
)

= 9.8 × 10−3 pb ,

σ
(
e+e− → χ0

1χ
0
1
)

= 0.27 pb .
(35)
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Fig. 9. Feynman diagrams
relevant for the production of
two neutralinos at the LHC
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The cross sections of the whole processes were calculated by
multiplying the production cross sections by the branching
ratios B(χ0

1 → W+e−) and B(χ0
1 → W+τ−). Their values,

for the set of parameters we have chosen, are:

B
(
χ0

1 → W+e−)
= 0.10

B
(
χ0

1 → W+τ−)
= 0.33 .

(36)

The complete cross sections are:

σ
(
pp → χ0

1χ
0
1 → W+W+e−τ−)

= 3.4 × 10−4 pb ,

σ
(
e+e− → χ0

1χ
0
1 → W+W+e−τ−)

= 9.3 × 10−3 pb .
(37)

On the other hand, the main source of background comes
from the production of four W s with two of them de-
caying leptonically. We calculated those processes using
CompHEP and we found:

σ
(
pp → WWWW → W+W+e−τ−ν̄eν̄τ

)
= 6.5 × 10−6 pb ,

σ
(
e+e− → WWWW → W+W+e−τ−ν̄eν̄τ

)
= 1.6 × 10−6 pb .

(38)

Assuming a luminosity of 105 pb−1/year at both the LHC
and the NLC, we expect ∼ 70 signal event per year at the
LHC and ∼ 930 signal events per year. Nevertheless we are
not interested in the charge of the final leptons, we only
require that one lepton belongs to the first family and the
other to the third one, so the total number of signal events
is obtained by multiplying the above results by four.

We remark that, while the background is small in both
cases, the number of signal events at the LHC is also small,
specially if a less-optimistic luminosity is used, in which
case a more detailed analysis is required. On the other hand
the NLC appears to be a very auspicious environment for
studying this model.

8 Conclusions

We have reexamined the possibility of generating neu-
trino masses and mixing angles in supergravity with non-
universal bilinear R-parity-violating parameters. We found
solutions with a relatively large value of tanβ, such that
one-loop contributions to the neutralino mass matrix are
as important as tree-level contributions. The heaviest neu-
trino mass is still generated mainly at the tree level, but the
other two masses and the three mixing angles are strongly
affected by loops. In particular, the tree-level approxima-
tions for the mixing angles give completely erroneous re-
sults.

We concentrate our study on a texture for the neutrino
mass matrix which is common among our solutions, and on
one particular solution corresponding to this texture. The
atmospheric mixing is nearly maximal, and the deviation
of the parameter tan2 θ23 from unity is related to the small
size of the ratio between the solar and atmospheric mass

scales ∆m2
sol/∆m2

atm. In addition, the solar and reactor
angles are both small because of the small parameter λ,
which in turn is small because Λ1/Λ3 < 1. Nevertheless, the
reactor angle is much smaller than the solar angle because
the second neutrino mass is much larger than the third one.

We have shown how the neutrino observables depend on
the BRpV parameters εi and Λi, and this dependency can
beunderstood in terms of simple approximations in terms of
parameters A, B, and C, where all the complication of the
one-loop contributions is concentrated. The dependency
on εi and Λi is strong, and it is not clear a priori that a
solution is available, due to the increasing precision of the
measurements of the neutrino observables. It is also shown
how these observables depend on the Sugra parameters,
namely the universal scalar mass m0 and the universal
gaugino mass M1/2. For the given values of εi and Λi,
solutions lie in a narrow strip in the plane m0 − M1/2,
where the gaugino mass is strongly restricted by the solar
and atmospheric mass scales, and the scalar mass by the
atmospheric angle and mass scale.

Finally, we showed how the decay rates of the neutralino
depend directly on some of the parameters εi and Λi. In fact
Γ (χ0

1 → We) and Γ (χ0
1 → Wµ) depend only on Λ1 and

Λ2 respectively, while Γ (χ0
1 → Wτ) depends on both Λ3

and ε3. Measurements on branching ratios of the LSP can
therefore give important information on the parameters of
the model. We estimated that a ∼ 70 events with e−τ− in
the final state can be observed at the LHC and ∼ 930 at
the LC, indicating that a measurement of the decay rates
is possible at the LC. A more detailed analysis is necessary
to estimate the expected precision of these measurements.
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